JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, May/June - 2019 **DIGITAL SIGNAL PROCESSING** (Electrical and Electronics Engineering)

Time: 3 Hours

b) IDFT {X(k) X(k)} c) Signal energy.

Code No: 127CK

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

b) c) d) e) f) g) h) i) j)	Determine the Z – transform of $x(n) = (n-3) u(n)$ Calculate the DFT of the sequence where $x(n) = \{1,1,-2,-2\}$ Compare the DIT and DIF radix-2 FFT. What are the advantages and disadvantages of bilinear transformation? How will you determine the order <i>N</i> of Chebyshev filter? Write the characteristic features of rectangular window. Explain the procedure for designing FIR filters using windows. What are the two basic operations in multi-rate signal processing? If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n)$, $y(n) = x(3n)$? PART-B	[2] [3] [2] [3] [2] [3] [2] [3] [2] [3]
d) e) f) g) h) i)	Compare the DIT and DIF radix-2 FFT. What are the advantages and disadvantages of bilinear transformation? How will you determine the order <i>N</i> of Chebyshev filter? Write the characteristic features of rectangular window. Explain the procedure for designing FIR filters using windows. What are the two basic operations in multi-rate signal processing? If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n)$, $y(n) = x(3n)$?	[3] [2] [3] [2] [3] [2]
e) f) g) h) i)	What are the advantages and disadvantages of bilinear transformation? How will you determine the order <i>N</i> of Chebyshev filter? Write the characteristic features of rectangular window. Explain the procedure for designing FIR filters using windows. What are the two basic operations in multi-rate signal processing? If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n)$, $y(n) = x(3n)$?	[3] [2] [3] [2] [3] [2]
e) f) g) h) i)	How will you determine the order <i>N</i> of Chebyshev filter? Write the characteristic features of rectangular window. Explain the procedure for designing FIR filters using windows. What are the two basic operations in multi-rate signal processing? If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n)$, $y(n) = x(3n)$?	[3] [2] [3] [2]
f) g) h) i)	Write the characteristic features of rectangular window. Explain the procedure for designing FIR filters using windows. What are the two basic operations in multi-rate signal processing? If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n)$, $y(n) = x(3n)$?	[3] [2] [3] [2]
g) h) i)	Explain the procedure for designing FIR filters using windows. What are the two basic operations in multi-rate signal processing? If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n)$, $y(n) = x(3n)$?	[2] [3] [2]
h) i)	What are the two basic operations in multi-rate signal processing? If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n)$, $y(n) = x(3n)$?	[3] [2]
i)	If $x(n) = \{1, -1, 3, 4, 0, 2, 5, 1, 6, 9,\}$, what is $y(n) = x(2n), y(n) = x(3n)$?	[2]
•		
	A PART-B	
2		(50 Marks)
2.	Test the stability of the following systems.	
	(a) $y(n) = \bigotimes(x(n))$ (b) $y(n) = x(-n-3)$ (c) $y(n) = nx(n)$	[10]
	OR	
2	The transfer function of a system is given by $H(z) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	Datarmina tha
5.	The transfer function of a system is given by, $H(2) = \frac{1}{1 - 0.5z^{-1}} + \frac{1}{1 - 2z^{-1}}$	
	stability and causality of the system for a) ROC : $ z > 2$; b) ROC : $ z $	< 0.5.[10]
4.	An 8 – point sequence is given by $x(n) = \{2, 1, 2, 1, 1, 1, 2, 1\}$. Compute 8 – point	nt DFT of
	x(n) by radix -2 DIT FFT. Also sketch the magnitude and phase spectrum.	[10]
	OR	
5.	If IDFT $\{X(k)\} = x(n) = \{1, 2, 1, 0\}$, using properties of DFT, find	
	a) IDFT $\{X(k-1)\}$	
	OR The transfer function of a system is given by, $H(z) = \frac{1}{1-0.5z^{-1}} + \frac{1}{1-2z^{-1}}$ If stability and causality of the system for a) ROC : $ z > 2$; b) ROC : $ z = 1$ An 8 – point sequence is given by $x(n) = \{2, 1, 2, 1, 1, 1, 2, 1\}$. Compute 8 –point x(n) by radix -2 DIT FFT. Also sketch the magnitude and phase spectrum. OR If IDFT $\{X(k)\} = x(n) = \{1, 2, 1, 0\}$, using properties of DFT, find	Determine < 0.5.[10] nt DFT of

Download all NOTES and PAPERS at StudentSuvidha.com

Max. Marks: 75

(25 Marks)

[10]

6.	Design a low-pass Butterworth filter using the bilinear transformation satisfying the following constraints:	method for
	Pass band: 0–400 Hz Stop band: 2.1–4 kHz	
	Pass band ripple: 2 dB Stop band attenuation: 20 dB	
	Sampling frequency: 10 kHz	[10]
	OR	
7.	Design a Chebyshev IIR digital low-pass filter to satisfy the constraints.	
	$0.707 \le H(w) \le 1$ for $0 \le w \le 0.2 \pi$	
	$ H(w) \le 0.1, \text{ for } 0.5 \ \pi \le w \le \pi$	
	using bilinear transformation and assuming $T = 1$ s.	[10]
8	Design a linear phase FIR high pass filter using hamming window with	a cutoff

Design a linear phase FIR high pass filter using hamming window, 8. with a cutoff frequency, $w_c = 0.8 \pi$ rad /sample and N = 7. [10]

OR

- Write the characteristic features of triangular window. 9.a)
- Compare the Hamming and Blackman windows. b)
- c) List the features of Hanning window spectrum.
- 10. Show that the transpose of a factor of D decimator is a factor of D interpolator if the transpose of a factor of D down sampler is a factor of D up sampler. [10]

[10]

OR

- 11.a) Explain about Computational Output Round-off Noise.
- Discuss in briefly about Round-off Noise in IIR Digital Filters. b) [5+5]

Download all NOTES and PAPERS at StudentSuvidha.com